Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
Biological evaluation and molecular modelling studies of in vivo synthesized ZnO nanoparticles

The ZnO nanoparticle is an excellent candidate for biological applications. It has potential antimicrobial, antioxidant, anticancerous, antidiabetic, anti-inflammatory and wound healing properties because of its biodegradability and biocompatibility. The green method of synthesizing nanoparticles is gaining popularity as it is cost effective and reduces the impact of toxic substances. In the present work, Eichhornia crassipes was used as the plant source for the synthesis of ZnO nanoparticles. It is an invasive aquatic macrophyte that is utilized to exploit its phytoaccumulation property. The goal of the current study was to evaluate the ability of a living plant to transform the accumulated metal into metal nanoparticles in vivo. The formation of ZnO nanoparticles was confirmed by UV–visible spectrophotometry, EDX analysis, FTIR, XRD and HRTEM. A strong absorption peak (300 nm) and an excitonic peak (243 nm) obtained in the UV spectrophotometric analysis confirmed the formation of ZnO nanoparticles. The presence of strong signals for zinc and oxygen in the extracted nanoparticles was identified by EDX analysis. The presence of proteins, alkaloids, flavonoids and phenolics were identified using FTIR and are contributed to the formation of ZnO nps by the reduction reaction. XRD analysis revealed the hexagonal phase wurtzite structure of ZnO with a crystalline size of 16.89 nm. HRTEM analysis revealed that the particles were spherical and agglomerated in nature with an average size of 16 nm which is consistent with the XRD results. The ZnO nanoparticles were evaluated for their antibacterial activity against pathogenic bacterial strains such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumoniae. The antibacterial activity of the ZnO nanoparticles was found to increase with their increasing concentration. The anticancerous activity of ZnO nanoparticles was also evaluated and exhibited a dose-dependent cytotoxicity against MCF-7 cells, which was further confirmed with molecular docking studies. Overall, a rapid, economical and ecofriendly approach for extracting ZnO nanoparticles was established, which can be employed as a potential therapeutic agent, particularly in nanomedicine for bacterial and cancer treatment.

Read full abstract
Fagopyrin F fraction from Fagopyrum tataricum demonstrates photodynamic inactivation of skin infecting bacterium and squamous cell carcinoma (A431) cells.

Photodynamic therapy (PDT) stands out as a noteworthy development as an alternative targeted treatment against skin ailments. While PDT has advanced significantly, research into photo-activatable "Green drugs" derived from plants which are less toxic than the synthetic drugs has not kept pace. This study investigates the potential of Fagopyrin F Containing Fraction (FCF) derived from Fagopyrum tataricum in mediating PDT against Staphylococcus aureus and skin cancer cells (A431). FCF was isolated from the plant extract using thin-layer chromatography, followed by identification of the compound through high-performance liquid chromatography and high-resolution liquid chromatography-mass spectrometry. FCF was tested to determine its antibacterial and anticancer efficacy. Results revealed that FCF-mediated PDT exhibited potent action against S. aureus, significantly reducing bacterial viability (MIC 19.5 μg/100 μL). Moreover, FCF-mediated PDT showed good efficacy against A431 cells, resulting in a notable reduction in cell viability (IC50 29.08μg/mL). Given the known association between S. aureus and squamous cell carcinoma (SCC), FCF shows the potential to effectively target and eradicate both SCC and the related S. aureus present within the lesions. In silico study reveals that Fagopyrin F effectively binds with the epidermal growth factor (EGFR), one among the highly expressed proteins in the A431 cells, with a binding energy of -9.6kcal/mol. The affinity of Fagopyrin F for EGFR on A431 cancer cells along with its cytotoxicity against skin cancer cells while safeguarding the normal cells (L929) plays a major part in the way it targets cancer cells. However, its safety, efficacy, and long-term advantages in treating skin conditions require more investigation, including in vivo investigations and clinical trials.

Read full abstract
Phytonano silver for cosmetic formulation- synthesis, characterization, and assessment of antimicrobial and antityrosinase potential.

Novel formulations of silver nanoparticles remain exciting if it is applicable for cosmetic purposes. This study proposes a value-added brand-new nanomaterial for improving skin complexion by inhibiting melanin development. This work aims to develop cost effective, efficient, natural silver nanoparticles phytomediated by aqueous extract of leaf sheath scales of Cocos nucifera (Cn-AgNPs) having potential as tyrosinase inhibitors hindering melanin synthesis. The formation of Cn-AgNPs was assessed spectrophotometrically and confirmed by the sharp SPR spectrum at 425nm. The chemical composition profiling was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. The morphology was confirmed by Field Emission Scanning Electron Microscopy (FESEM) and the thermal stability was assessed by Thermogravimetric analysis (TGA). Pharmacological application studies supported the materialization of Cn-AgNPs with significant antityrosinase potential and considerably improved antibacterial and antioxidant properties. Cn-AgNPs showed potential antibacterial effects against gram-positive and negative strains, including prominent infectious agents of the skin. Antioxidant capacity was confirmed with an IC50 of 57.8μg/mL by DPPH radical scavenging assay. Furthermore, in vitro melanin content determination was performed using SK-MEL cells. Cell line studies proved that Cn-AgNPs decrease the melanin content of cells. The IC50 value obtained was 84.82μg/mL. Hence Cn-AgNPs is proposed to be acting as a whitening agent through lessening cellular melanin content and as a significant inhibitor of tyrosinase activity. The antioxidant properties and antibacterial effects can contribute to skin rejuvenation and can prevent skin infections as well. This evidence proposes the development of a new nanostructured pharmaceutical and cosmetic formulation from Cocos nucifera leaf sheath scales.

Read full abstract
Open Access
Enhanced selectivity of novel sea urchin-like h-/m-WO3 hetero nanoflowers for highly sensitive detection of ammonia by double filtration method

Real-time monitoring of toxic gases and breath markers can be performed by metal oxide semiconductor-based chemo-resistive gas sensors due to their simple structures, low cost, and faster and better recovery and response. Due to the effective electron-hole separation, tuning the development of phase junctions of the metal oxide is an efficient method for improving their gas sensing properties. In this study, two distinct hydrothermal methods were used to synthesize h-/m-WO3 hetero-nanoflowers. In the first method, L-Cysteine was used to facilitate the formation of phase junctions between h-WO3 and m-WO3 nanostructures, whereas Thiourea was used in the second. Various characterisation approaches validated the hexagonal-monoclinic phase junction development in the nanoflowers. The sensing material fabricated using Thiourea with a concentration of 0.01M performed better than other sensors. At 350°C, the selected sample displayed outstanding ammonia sensing capacity with the experimental detection limit of 1 ppm (response=3.33). The theoretical detection limit is determined to be 27 ppb. The selectivity of the sensor towards NH3 over H2S and acetone is increased by combining the devices with a double filtration setup. The effectiveness of the selected h-/m-WO3 sensor for diagnosing kidney dysfunction was evaluated by analyzing simulated breath samples.

Read full abstract
Paradoxical effects of nanomaterials on plants: Phytohormonal perspective exposes hidden risks amidst potential benefits

The rapid growth of nanotechnology has led to the production of a significant amount of engineered nanomaterials (NMs), raising concerns about their impact on various domains. This study investigates the negative interactions between NMs and phytohormones in plants, revealing the changes in signaling crosstalk, integrated responses and ecological repercussions caused by NM pollution. Phytohormones, which include auxins, cytokinins, gibberellins, abscisic acid, ethylene, jasmonic acid, salicylic acid and brassinosteroids are essential for plant growth, development, and stress responses. This review examines the intricate relationships between NMs and phytohormones, highlighting disruptions in signaling crosstalk, integrated responses, and ecological consequences in plants due to NM pollution. Various studies demonstrate that exposure to NMs can lead to alterations in gene expression, enzyme functions, and ultimately affect plant growth and stress tolerance. Exposure to NMs has the capacity to affect plant phytohormone reactions by changing their levels, biosynthesis, and signaling mechanisms, indicating a complex interrelation between NMs and phytohormone pathways. The complexity of the relationships between NMs and phytohormones necessitates further research, utilizing modern molecular techniques, to unravel the intricate molecular mechanisms and develop strategies to mitigate the ecological consequences of NM pollution. This review provides valuable insights for researchers and environmentalists concerned about the disruptive effects of NMs on regulating phytohormone networks in plants.

Read full abstract