Viscoelastic shear flows support additional chaotic states beyond simple Newtonian turbulence. In vanishing Reynolds number flows, the nonlinearity in the polymer evolution equation alone can sustain inertialess “elastic” turbulence (ET) while “elasto-inertial” turbulence (EIT) appears to rely on an interplay between elasticity and finite-Re effects. Despite their distinct phenomenology and industrial significance, transition routes and possible connections between these states are unknown. We identify here a common Ruelle-Takens transition scenario for both of these chaotic regimes in two-dimensional direct numerical simulations of FENE-P fluids in a straight channel. The primary bifurcation is caused by a recently discovered “polymer diffusive instability” associated with small but nonvanishing polymer stress diffusion which generates a finite-amplitude, small-scale traveling wave localized at the wall. This is found to be unstable to a large-scale secondary instability which grows to modify the whole flow before itself breaking down in a third bifurcation to either ET or EIT. The secondary large-scale instability waves resemble “center” and “wall” modes, respectively—instabilities which have been conjectured to play a role in viscoelastic chaotic dynamics but were previously only thought to exist far from relevant areas of the parameter space. Published by the American Physical Society 2024
Read full abstract- Home
- Search
Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
1
Field Of Study
Topics
Open Access
Language
Reset All
Filter 2
Cancel
Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
1
Field Of Study
Topics
Open Access
Language
Reset All
Filter 2
Export
Sort by: Newest first