Abstract

Mammalian oocytes have the ability to confer totipotency to terminally differentiated somatic cell nuclei. Viable cloned animals have been produced by somatic cell nuclear transfer (NT) into oocytes in many mammalian species including mouse. However, the success rates of the production were quite low in all species. Many studies have measured differences in gene expression between NT and fertilized embryos in relatively advanced stages of development such as pre- and post-natal stages or the blastocyst stage. In the present study, we compared gene expression patterns using differential display RT-PCR (DDRT-PCR) between the NT and IVF embryos at the 2-cell stage to detect some abnormalities affecting later development of NT embryos. Aberrant gene expression was detected in NT embryos compared with IVF embryos, and MuERV-L and Dnaja2 genes were down-regulated and Inpp5b and Chst12 genes were up-regulated in the NT embryos. Further analysis showed that the expression of zygotically activated genes such as Interferon-gamma, Dub-1, Spz1, DD2106 (unknown gene), and DD2111 (unknown gene) were suppressed in NT embryos, suggesting that the cellular process involved in the nuclear reprogramming of somatic nucleus is not appropriately regulated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.