Abstract

Nickel oxide (NiOx ) has been limited in use as a hole transport layer for its low conduction, surface defects, and redox reactions with the perovskite layer. To address these issues, the incorporation of zwitterion L-tryptophan (Trp) is proposed at the NiOx /Trp interface. The carboxyl group of Trp effectively passivates the surface positive defects of NiOx , thereby improving its optical and electrical properties. The ammonium group of Trp not only passivates negative defects but modulates the growth of the perovskite layer, resulting in an improved perovskite film quality. Furthermore, the Trp layer acts as a buffer layer, suppressing adverse interfacial reactions between the perovskite and NiOx . Consequently, perovskite solar cells with 1.56 and 1.68eV absorbers achieve the champion power conversion efficiency(PCE) of 23.79% and 20.41%, respectively. Moreover, the unencapsulated devices demonstrate excellent long-term stability, retaining above 80% of the initial PCE value after 1600 h of storage in the air with a humidity of 50-60%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call