Abstract

New scaling behavior has been both predicted and observed in the spontaneous production of fluxons in quenched Nb-Al/Al(ox)/Nb annular Josephson tunnel junctions (JTJs) as a function of the quench time, tau(Q). The probability f(1) to trap a single defect during the normal-metal-superconductor phase transition clearly follows an allometric dependence on tau(Q) with a scaling exponent sigma = 0.5, as predicted from the Zurek-Kibble mechanism for realistic JTJs formed by strongly coupled superconductors. This definitive experiment replaces one reported by us earlier, in which an idealized model was used that predicted sigma = 0.25, commensurate with the then much poorer data. Our experiment remains the only condensed matter experiment to date to have measured a scaling exponent with any reliability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call