Abstract

The body size of an individual zooplankton is well related to its grazing rate and to the range of particle sizes it can ingest, and since cladocerans and copepods feed differently, they follow different relationships. Based on these general patterns in individual organisms, we tested whether the size structure and taxonomic composition of more complex natural zooplankton communities are related to their in situ grazing rate and to the range of algal sizes they graze. We compared community grazing rates on individual algal taxa in two communities dominated by small cladocerans, three communities dominated by large cladocerans and three copepod-dominated communities. Small algae were usually grazed most intensively, but grazing rates were poorly related to algal size alone. The range in size of grazed algae increased with increasing mean zooplankton body size, but differed systematically with their taxonomic composition. Communities dominated by Ceriodaphnia or Holopedium grazed a narrower size range of algae [maximum greatest axial length dimension (GALD)=16-36 μm)] than communities with large biomasses of Bosmina or Daphnia (maximum GALD=28-78 μm). Copepod-dominated communities followed the same general relationship as cladocerans. Daphnia-dominated communities grazed the broadest range of algal sizes, and their total grazing rates were up to 2.4 times their grazing rates on small (<35 μm) "highly edible" algae, a difference of similar magnitude to those found in successful trophic cascade biomanipulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call