Abstract

Many studies suggest that the taxonomic composition of a zooplankton community should determine its grazing rate and selectivity for different types of particles. It is generally believed that copepod-dominated communities should (i) have lower grazing rates and (ii) consume larger particles than communities dominated by large cladocerans. I tested these hypotheses in situ by comparing zooplankton grazing in 19 communities from low-productivity lakes where the zooplankton ranged from >99% copepod biomass to >90% large cladoceran biomass (Holopedium gibberum, Daphnia spp.). The zooplankton grazed 1-14% of total chlorophyll per day and 0-17% of the chlorophyll in algae <35 µm per day. Grazing rates increased with increasing zooplankton biomass (r2 = 0.34, P < 0.01), but once the effect of zooplankton biomass was accounted for, similar grazing rates were found in copepod- and in cladoceran-dominated communities. The difference in grazing rates on small algae and on the whole phytoplankton assemblage, on the other hand, varied systematically with zooplankton taxonomic composition. Holopedium-dominated communities were most efficient at grazing algae <35 µm, Bosmina-dominated communities had similar grazing rates on algae <35 µm and on the whole phytoplankton assemblage, and copepod-dominated communities had similar or slightly higher grazing rates on the whole phytoplankton assemblage. Qualitative differences in grazing selectivity of different zooplankton taxa are observed in complex natural communities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call