Abstract

The Gaussian part of the Hamiltonian of the four-component fermion model on a hierarchical lattice is invariant under the block-spin transformation of the renormalization group with a given degree of normalization (the renormalization group parameter). We describe the renormalization group transformation in the space of coefficients defining the Grassmann-valued density of a free measure as a homogeneous quadratic map. We interpret this space as a two-dimensional projective space and visualize it as a disk. If the renormalization group parameter is greater than the lattice dimension, then the unique attractive fixed point of the renormalization group is given by the density of the Grassmann delta function. This fixed point has two different (left and right) invariant neighborhoods. Based on this, we classify the points of the projective plane according to how they tend to the attracting point (on the left or right) under iterations of the map. We discuss the zone structure of the obtained regions and show that the global flow of the renormalization group is described simply in terms of this zone structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.