Abstract

The renormalization group dynamics is studied in the four-component fermionic hierarchical model in the space of coefficients that determine the Grassmann-valued density of the free measure. This space is treated as a two-dimensional projective space. If the renormalization group parameter is greater than 1, then the only attracting fixed point of the renormalization group transformation is defined by the density of the Grassmann δ-function. Two different invariant neighborhoods of this fixed point are described, and an algorithm is constructed that allows one to classify the points on the plane according to the way they tend to the fixed point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.