Abstract

The Atud gold mine located in the Neoproterozoic diorite and metagabbro of the Central Eastern Desert of Egypt has been initially excavated during Pharaonic times. Between 1953 and 1969, the Egyptian Geological Survey and Mining Authority performed underground prospection in the auriferous quartz vein and metasomatic alteration zones in the main Atud area, estimating a principal gold lode of 19,000tones (16.28g/ton), and 1600tons of damp (1.24g/ton). Yet the potentiality of the deposit has not been exhausted. However, for exploration of hidden ore, quantitative characterization using trace elements zoning of mineralization haloes with 280 samples from surface and three underground mining levels is applied. This was through multivariate statistical analysis (Factor analysis) of 11 selected trace elements. Axial (vertical) extents of primary haloes above and beneath gently dipping orebody are also visualized to interpret the level of erosion, determine the direction of mineralizing solutions as well as to examine whether the hidden orebody is promising at the Atud mine.Axial zones of primary dispersion aureoles of trace elements are: Ag, As, S and U around the auriferous quartz veins; Cu, and Pb in the surface horizons; and Zn, Ni, Co, and U along the lower margin of mineralization zone. Gold contents in bedrock and quartz vein samples from level-42M are the highest (5.7 and 40.3ppm, respectively). In the transverse (lateral) direction, the maximum relative accumulation of Au and Zn occurs at the Northern Shaft; Pb, Cu, As, and U at the Main Shaft; and Ag, S, Co, and Ni at the Southern Shaft. The estimated axial zonation sequence of indicator elements using the variability index is Pb→Cu→Ag→Au→As→S→Ni→Co→U→Zn. According to this zonation, an index such as (Pb×Cu)D/(U×Zn)D can be a significant for predicting the Au potentiality at a particular depth. In addition, the Pb/U zonality index is an appropriate indicator for the degree of erosion at the Atud gold mine. The degree of surficial zonality of the mineralization as deduced from geochemical maps and the level of erosion of the geochemical anomalies as well as the decreasing of gold content with depth recorded throughout the different underground mine workings make it necessary for the prospection model to evaluate the drainage patterns dissecting the mineralized zone.The application of R-mode factor analysis estimated seven statistical factors, and factor score maps are portrayed. Factors 1 (Ag, Au, As, Co, S, U and Zn) and 2 (Zn, U, Co and S) significantly reflect the Au-mineralization (ore-controlled), and their score maps enable a more precise delineation of auriferous quartz veins and the area which may contain primary gold mineralization. The other factors reveal the distribution of Cu- and Pb-bearing minerals (supergene alteration factors), and Ba and Ni in the host diorite (lithologically-controlled). These are consistent with the calculated maximum relative accumulation of trace elements, proposing a potential model of exploration based on integrating underground geochemical data from old gold mine workings with spatial information from R-mode factor score maps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call