Abstract

Multi-physics simulations are at the heart of today's engineering applications. The trend is towards more realistic and detailed simulations, which demand highly resolved spatial and temporal scales of various physical mechanisms to solve engineering problems in a reasonable amount of time. As a consequence, numerical codes need to run efficiently on high-performance computers. Therefore, the framework Zonal Flow Solver (ZFS) featuring lattice-Boltzmann, finite-volume, discontinuous Galerkin, level set and Lagrange solvers has been developed. The solvers can be combined to simulate, e.g. quasi-incompressible and compressible flow, aeroacoustics, moving boundaries and particle dynamics. In this manuscript, the multi-physics implementation of the coupling mechanisms are presented. The parallelisation approach, the involved solvers and their scalability on state-of-the-art heterogeneous high-performance computers are discussed. Various multi-physics applications complement the discussion. The results show ZFS to be a highly efficient and flexible multi-purpose tool that can be used to solve varying classes of coupled problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call