Abstract
Carpal navicular fractures are the most common carpal fractures. This study intends to explore the specific mechanism of Zoledronic Acid (ZA) in carpal navicular fracture healing via long non-coding RNA (lncRNA) growth arrest specificity 5 (GAS5) to mediate microRNA (miR)-29a-3p.A fractured rat model was constructed. Two weeks later, a subcutaneous injection of systemic ZA was implemented, and an injection of plasmid vectors interfered with GAS5 or miR-29a-3p expression was performed on the fracture site. Osteocalcin (OCN) and bone morphogenetic protein-2 (BMP-2) were determined, as well as serum levels of alkaline phosphatase (ALP), osteopontin (OPN) and osteoprotegerin (OPG) and bone mineral density. MC3T3-E1 cells were transfected with plasmid vectors interfering with GAS5 or miR-29a-3p, and cell proliferation and apoptosis were analyzed. GAS5 and miR-29a-3p expression in fractured rats was tested, together with their binding relationship.ZA promoted OCN and BMP-2 expression, increased bone mineral density and serum levels of ALP, OPN and OPG in fractured rats. GAS5 was upregulated and miR-29a-3p was down-regulated in fractured rats. Downregulation of GAS5 or upregulation of miR-29a-3p further promoted bone healing in fractured rats. GAS5 targets miR-29a-3p, and down-regulation of miR-29a-3p can reverse the effect of down-regulation of GAS5 on bone healing in fractured rats. ZA promoted the proliferation of MC3T3-E1 cells and inhibited apoptosis by regulating the GAS5/miR-29a-3p axis.ZA regulates miR-29a-3p expression by down-regulating GAS5 to promote carpal navicular fracture healing, promote MC3T3-E1 cell proliferation, and inhibit cell apoptosis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have