Abstract

Bisphosphonates, which are extensively used in bone-related disorders, have been reported to inhibit atherosclerosis and neointimal hyperplasia. In the present study, we investigated the effects of a bisphosphonate, zoledronate, on the proliferation, adhesion, migration and microstructure of vascular smooth muscle cells (VSMCs) from Sprague–Dawley rats. It was shown that zoledronate suppressed VSMCs proliferation after 48 h cultivation in a dose depend manner, most obviously at concentrations above 10 µM. Cell cycle analysis indicated that zoledronate inhibited the proliferation of VSMCs via cell cycle arrest at S/G2/M phase. This inhibition was not associated with cell death. In a modified Boyden chamber model, it was shown that zoledronate dose-dependently inhibited VSMCs adhesion to collagen and migration stimulated by platelet-derived growth factor-BB. Western blot analysis suggested that zoledronate significantly inhibited the phosphorylation of focal adhesion kinase. Furthermore, we observed that more and more VSMCs changed from a bipolar appearance to a globular shape under inverted light microscope as zoledronate concentration increased from 0.1 to 100 µM. Images under transmission electron microscope confirmed this morphological change, and many electron density bodies were observed in zoledronate-treated VSMCs. These findings indicated that bisphosphonates' effects of suppressing atherosclerosis and neointimal hyperplasia might be due to inhibition of VSMCs, at least for zoledronate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.