Abstract
Cold atmospheric plasma (CAP) has been recognized as a potential alternative or supplementary cancer treatment tool, which is attributed by its selective antiproliferation effect on cancer cells over normal cells. Standardization of the CAP treatment in terms of biological outputs such as cell growth inhibition and gene expression change is essential for its clinical application. This study aims at identifying genes that show consistent expression profiles at a specific CAP condition, which could be used to monitor whether CAP is an appropriate treatment to biological targets. To do this, genes showing differential expression by two different CAP treatment conditions were screened in the MCF-7 breast cancer cells. As a result, ZNRD1 was identified as a potential marker with being consistently upregulated by 600 s but downregulated by the 10 × 30 s CAP treatment scheme. Expression of ZNRD1 was increased in breast cancer tissues compared to normal tissues, judged by cancer tissue database analysis, and supported by the antiproliferation after siRNA-induced downregulation in MCF-7. Interestingly, the antisense long noncoding RNA (lncRNA) of ZNRD1, ZNRD1-AS1, was regulated to the opposite direction of ZNRD1 by CAP. The siRNA-based qPCR analysis indicates that ZNRD1 downregulates ZNRD1-AS1, but not vice versa. ZNRD1-AS1 was shown to increase a few cis-genes such as HLA-A, HCG9, and PPP1R11 that were also regulated by CAP. Altogether, this study identified a pair of gene and its antisense lncRNA of which expression is precisely controlled by CAP in a dose-dependent manner. These genes could help elucidate the molecular mechanism how CAP regulates lncRNAs in cancer cells.
Highlights
Cold atmospheric plasma (CAP) is a specific type of plasma produced at low atmospheric temperature
ZNRD1 and ZNRD1-AS1 Are Oppositely Regulated by CAP
This study was performed to elucidate the mechanism by which CAP regulates the methylation level of CpG and ZNRD1 expression
Summary
Cold atmospheric plasma (CAP) is a specific type of plasma produced at low atmospheric temperature. CAP has the advantage of preferentially damaging cancer cells over normal cells. CAP increases the ROS level in both cell types, but the resulting ROS level in cancer cells is past the threshold of cellular survival, leading to cell death, while still below the threshold in normal cells [7, 8]. This characteristic of CAP has been utilized in various cancer cell types for cancer treatment in vitro cultures cells and in vivo animal models [9,10,11]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have