Abstract

Zinc oxide ultra-fine crystalline powders and polycrystalline films of high optical quality were synthesized under soft hydrothermal conditions. The phase composition, crystal morphology, and luminescent properties of submicron ZnO powders and films were studied depending on synthesis conditions (system composition, precursor kind, solvent type and concentration, temperature). For the systems containing metallic zinc, the ZnO growth mechanism was suggested. The most intensive UV luminescence and the highest values of IUV/IVIS were observed for polycrystalline films grown on Zn substrates. Low-threshold UV lasing at room temperature was found for ZnO-films, grown in hydrothermal systems with hydroxide or halide solutions as solvents, E th = 1–5 MW/cm2. The lowest threshold was observed on the ZnO films grown using LiOH as a solvent and zinc nitrate as ZnO-precursor. Clear mode structures with line-width 0.3 nm are characteristic of the lasing spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.