Abstract

Sonodynamic therapy depending on ultrasound irradiation, which generates reactive species to kill cancer cells, has attracted considerable attention due to the deep tissue penetration depth. However, the insufficient separation of electron/hole pairs induces its limited therapeutic efficiency. Herein, we use oxygen vacancy and ZnO quantum dots decoration techniques to enhance electron/hole separation and reactive species production. In oxygen vacancy-engineered BaTiO3, the higher oxygen vacancy concentration leads to more efficient adsorption of activate O2 and thus results in production of more radicals. In BaTiO3/ZnO heterostructures, the built-in electric field further improves separation of electron/hole pairs. The separated electron/hole react with O2/H2O to produce reactive species of •OH/∙O2- and kill cancer cells upon ultrasound irradiation. The work provides a guidance for sonosensitizers to tumor therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.