Abstract

Increasing the aspect ratio of ZnO nanostructures is one possible strategy to improve their thermoelectric properties. ZnO nanostructures with one-dimensional (1D) and three-dimensional (3D) morphologies were obtained using electrochemical deposition. Adjusting various deposition parameters made it possible to obtain arrays of vertically aligned ZnO nanowires (NWs) with controlled dimensions, density, and electrical properties. The concentrations of zinc or chloride ions in the solution were found to be key parameters. ZnO NWs were transformed into ZnO nanotubes (NTs), with an increased aspect ratio compared with the NWs, by selectively dissolving the core of the ZnO NWs in a concentrated KCl solution. The aspect ratio was strongly increased when the ZnO NWs were hierarchically organized in a 3D morphology. The synthesis of thin films composed of ordered hollow urchin-like ZnO NW structures was performed by combining the electrochemical deposition and polystyrene sphere templating methods. The electronic properties of the urchin-like ZnO structures were investigated by means of photoluminescence and transmission measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call