Abstract

In this work, ZnO nanostructures using zinc nitrate as starting material grown on different silicon–based substrate were studied. Porous silicon was prepared by electrochemical etching to modify the silicon surface. Field emission scanning electron microscopy (FESEM) displays different distribution and nanostructures of ZnO on different substrate. The seeded substrates show the better site for the growth of ZnO nanostructure due to presence of nucleation site. Crystalline of ZnO nanostructure were investigated by X–ray diffraction (XRD) grating. It is found that the hexagonal wurtzite of ZnO nanostructures were produced for all samples. The peaks (100), (002) and (101) are dominating for all samples prove that hexagonal structures of ZnO were formed. Photoluminescence spectra were employed in order to study the optical properties. The peak centred at 395-398 nm corresponds to free–exciton recombination ZnO nanostructures are found in silicon and porous silicon, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.