Abstract

Hydrothermal method provides the advantages of simple, low-temperature growth conditions, low cost and large surface areas for the samples. Also, exciton dissociation can be enhanced by surface plasmon resonance (SPR) due to the plasmonic absorption enhancement of incident light. In this paper, high-gain ultraviolet (UV) photodetectors based on vertically aligned ZnO nanorods (ZnO-NRs) array as light absorption antenna were presented, in which ZnO-NRs array was prepared by hydrothermal method. Our experimental data showed that the device performance of the UV photodetector Au/ZnO(ZnO-NRs:Au-NPs)/Au can be further enhanced after the gaps of ZnO-NRs array were filled with Au nanoparticles (Au-NPs). The photo-to-dark current ratio and the specific detectivity of the UV photodetector Au/ZnO(ZnO-NRs:Au-NPs)/Au reached to 1 × 105 and 1.84 × 1013 Jones at 2 V under 100 μW/cm2 365 nm illumination, respectively. The physical mechanism for the enhanced performance of the UV photodetectors is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.