Abstract

We report on highly sensitive and flexible biosensors for noninvasive lactate and alcohol monitoring in human perspiration based on zinc oxide (ZnO) nanostructures that does not require linker layer for surface functionalization due to the high isoelectric point of ZnO. Towards fabrication of the biosensors, two-dimensional (2D) ZnO nanoflakes (NFs) were synthesized on flexible polyethylene terephthalate (PET) substrates employing single step sonochemical method after which lactate oxidase (LOx) and anti-body for ethyl glucuronide (EtG)-a metabolite of ethanol were immobilized atop without a linker layer. The cyclic voltammetry (CV) measurements in the concentration range of 10pM-10μM for lactate and 4.5 μM-0.45 M for EtG yielded minimum limit of detection of 10 pM and 4.5 μM, respectively for the electrode area of 0.5 × 0.5 cm2. Moreover, lactate sensor with ZnO NF electrodes demonstrated four times higher sensitivity compared to the ones with gold electrode that required DTSP linker layer for surface functionalization. High isoelectric point allows a direct, stable pathway for rapid electron transport without any mediator when an analyte is immobilized on NFs and improves electron transfer rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.