Abstract

• Hot extraction of jute stick. • A green hydrothermal approach to synthesize ZnO nanoflakes using jute stick extract. • Prepared jute extrcact assisted ZnO nanoflakes showed a significant dye degradation. • 98 % efficiency in MB degradation was calcualted after 8 h of UV light irradiation. • Prepared jute supported ZnO exhibited 19 mm of zone inhibition against E. coli. In this paper, we used green and hydrothermal methodology to prepare zinc oxide (ZnO) nanoflakes (NFs) with jute stick extract (J–ZnO NFs) as growth substrate. The prepared materials were characterized using different analytical techniques including ultraviolet–visible spectroscopy (UV–vis), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The characteristic absorption peak for ZnO NFs and J–ZnO NFs were observed from the UV–vis spectrum at 373 and 368 nm respectively. The hexagonal wurtzite crystal structure of ZnO NFs and J–ZnO NFs was confirmed by XRD analysis. FESEM and TEM analyses of synthesized J–ZnO NFs confirmed their NFs shape and collectively flower-like structure formation by the assembly of NFs of J–ZnO on cellulose of jute stick extract substrate. The FTIR analysis revealed the functional groups of jute stick extract biomolecules, mainly cellulose, are responsible for the formation of collectivel flower like J–ZnO NFs structure. The XPS analysis revealed the surface and chemical compositions (Zn, C, and O) of J–ZnO NFs. The photocatalytic performance of ZnO NFs and J–ZnO NFs samples was carried out by the degradation of methylene blue (MB) dye solution under UV light irradiation. The degradation efficiency of ZnO NFs and J–ZnO NFs was obtained 79 % and 89 %, respectively, for 5 h. Notably, the degradation efficiency of the J–ZnO NFs was 98 % after 8 h of irradiation, which is very inspiring. The both NFs exhibited first-order kinetics with MB photodegradation. We also examined the possible antibacterial activity of both samples against Escherichia coli (E. coli) pathogens, which demonstrated a significant result with a 17 mm and 19 mm zone of inhibition by ZnO NFs and J–ZnO NFs respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call