Abstract

ZnGa2O4:Cr3+ is shown to be a new bright red UV excited long-lasting phosphor potentially suitable for in vivo imaging due to its 650 nm-750 nm emission range. Photoluminescence and X-ray excited radioluminescence show the 2E → 4A2 emission lines of both ideal Cr3+ and Cr3+ distorted by a neighboring antisite defect while long-lasting phosphorescence (LLP) and thermally stimulated luminescence (TSL) almost exclusively occur via distorted Cr3+. The most intense LLP is obtained with a nominal Zn deficiency and is related to a TSL peak at 335K. A mechanism for LLP and TSL is proposed, whereby the antisite defect responsible for the distortion at Cr3+ acts as a deep trap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.