Abstract

Background: Cervical cancer is the fourth most common cancer among women worldwide. The zinc finger transcription factor 281 (ZNF281)/ZBP-99 protein specifically binds to GC-rich DNA sequences and regulates gene expression, and it has been shown to promote tumor progression. In this study, we aim to investigate the function and molecular mechanism of ZNF281 in uterine cervical carcinoma. Methods: We conducted immunohistochemistry and Western blot assays to determine the expression of ZNF281 in eight human cervical cancer tissues. And, xenograft experiments involving the injection of HeLa cells into nude mice was used to determine the function of ZNF281 on proliferation. Transwell assays were used to detect the migration and invasion of HeLa cells after indicated that ZNF281 overexpression. Results: Our results indicated that ZNF281 protein levels were higher in cervical cancer tissues compared to normal cervical tissues. Additionally, ZNF281 was expressed in human cervical carcinoma cell lines, including HeLa, SiHa, C-33 A, CaSki, and HT-3, and is localized in both the cell nucleus and cytoplasm. ZNF281 overexpression did not influence HeLa cell proliferation or tumor size in situ. Moreover, nude mice injected with ZNF281-overexpressing cell lines developed more tumor lesions in the lungs compared to those injected with control cell lines. Conclusions: These findings suggest that ZNF281 is associated with tumor metastasis without affecting cell proliferation, both in vivo and in vitro.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.