Abstract

The development of a low-cost and disposable biosensing technologies has received a great interest of healthcare for the sensitive and reliable detection of single nucleotide mutation related to single nucleotide polymorphisms (SNPs). In the present study, an impedimetric biosensing platform based on zip nucleic acids (ZNA) was developed for the sensitive detection of Factor V Leiden (FV Leiden) mutation. After optimization of experimental parameters, the sequence selective hybridization between ZNA probe and target related to FV Leiden mutation was evaluated via electrochemical impedance spectroscopy technique (EIS) by measuring changes at the charge transfer resistance, Rct. Sensitive and selective impedimetric analysis was performed using carbon nanofiber (CNF) modified screen printed electrodes (SPE) and multi-channel screen printed array of electrodes (MULTIx8 CNF-SPE) resulting in a relatively shorter time in comparison to conventional methods. The selectivity of ZNA probe to mutation-free DNA sequences was also investigated. The applicability of single-use ZNA biosensor was also tested in synthetic PCR samples containing a single base mutation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.