Abstract

The paper presents critical analysis of literature data on the stability constants of aqueous species in the system Zn-O-H-S−II-Cl. In order to more accurately determine the composition and stability of chloride Zn complexes, additional experiments were carried out to determine the solubility of sphalerite ZnSc in chloride-sulfide solutions at 175°C and the saturated vapor pressure of the solution. Having processed the data, we obtained the thermodynamic properties at 25°C and parameters of the HKF (Helgeson-Kirkham-Flowers) equation of state (EoS) for hydroxide, chloride and hydrosulfide Zn complexes. The constants of sphalerite dissolution reactions with the formation of hydrosulfide and, particularly, chloride complexes increase with increasing temperature. The predominant Zn transport species in high-temperatures (>250°C) chloride-sulfide hydrothermal solutions are chloride complexes, first of all, ZnCl 4 2− . As the temperature decreases, the concentrations of complexes with smaller numbers of Cl− ligands increase. The region of weakly acidic to alkaline pH is dominated by hydrosulfide Zn complexes, but their concentrations in equilibrium with sphalerite are relatively low (a few ppm at 400°C and S concentrations <0.1 mol kg−1) and decreases with a temperature decrease. In the region dominated by chloride complexes, the concentration of dissolved Zn can amount to a few fractions of a percent at near-neutral pH, 400°C, and m(NaCl) = 1.0 and increases if the fluid becomes more acidic. An extremely important factor controlling the concentrations of dissolved Zn is temperature: cooling leads to the effective precipitation of sphalerite, particularly in the region dominated by chloride complexes. The thermodynamic properties of the solid phases and parameters of the HKF model for aqueous species in the system Zn-O-H-S-II-Cl are presented in the on-line version of the FreeGC database (http://www-b.ga.gov.au/minerals/research/methodology/geofluids/thermo/calculator/search.jsp), which enables calculating the Gibbs energy values of components of the system and reaction constants involving these components at PT parameters up to 600°C and 3 kbar.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call