Abstract
One of the major challenges in developing aqueous zinc-ion hybrid supercapacitors (ZHSCs) is maintaining high performance with a high loading of cathode materials. In the present work, Zn-doped Mn₃O₄ (Zn-Mn₃O₄) nanoparticles with lattice distortion were successfully synthesized on flexible carbon cloth with a high loading up to 11 mg cm⁻² through electrodeposition. The as-prepared aqueous ZHSC with the cathode of Zn-Mn3O4 presented a superior areal capacitance of 3135.3 mF cm⁻² at 2 mA cm⁻² and good stability with 75.35 % capacity retention after 1000 cycles. Furthermore, the engineered quasi-solid-state ZHSC using Zn-Mn3O4-0.5 demonstrated high mechanical flexibility and excellent capacity retention across different bending angles, thereby making them attractive candidates for the next generation of flexible wearable devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have