Abstract
Herein, Zn-doped flower plate-like CuO with compositions Cu1-xZnxO (x= 0, 0.05) have been synthesized via hydrothermal method. The thin films of Zn-doped CuO-Reduced graphene oxide (rGO) hybrid materials have been fabricated by drop casting method on glass substrates to study their gas sensing behavior. The structure and morphology of hybrid samples have been examined by X-ray diffraction (XRD) and Field-emission scanning electron microscope (FE-SEM). The sensing performance of Zn-doped flower plate-like CuO (x=0, 0.05)-rGO sensor have been measured for 40 ppm NO2 gas at room temperature and 5% Zn doped hybrid sample exhibit percentage response of ∼66.6 which is almost twice of undoped hybrid sample. Apart from this, sensing performance has been measured for different concentrations of NO2 ranging from 6-125 ppm and also the sensor reproducibility has been checked. In present work, it is suggested that the doping of Zn into rGO based CuO gas sensor could be a promising approach for the development of inexpensive and highly selective room temperature NO2 gas detection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have