Abstract

The toxic effects of chemotherapy drugs on normal tissues are still a major limiting factor in cancer treatment. In this paper, we report a metal-organic framework (Zn-Co ZIF) with chitosan-coated outer layer as a carrier for the drug adriamycin hydrochloride (DOX), a treatment for liver cancer, as a novel anti-cancer nanodrug-enhanced carrier. Gold nanoparticles, a good photothermal conversion agent, were combined with the target SH-RGD during surface functionalisation to prepare Zn-Co ZIF@DOX-CS-Au-RGD (ZD-CAR), a nanoplatform with good photothermal conversion properties and targeting for combined liver cancer therapy. ZD-CAR was developed after RGD accurately targeted the tumour and entered the tumour microenvironment (TME), it cleaves and releases the liver cancer therapeutic agent (DOX) in a weak acidic environment to effectively kill tumour cells. The metal skeleton cleavage releases Co2+, which catalyzes the production of oxygen from H2O2 to alleviate the tumour hypoxic environment. The dissolved oxygen could reach 14 mg/L after adding 80 mg/mL of ZD-CAR. Meanwhile, gold nanoparticles could convert light energy into heat energy under 808 NIR irradiation to induce local superheating and kill tumour cells. In summary, this study developed a nanoplatform that combines chemo-photothermal-targeted therapy. It has shown good therapeutic effeciency in cellular experiments and performance tests and has promising applications in anti-cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.