Abstract
Effective and affordable photocatalysts play an important role in the cost reduction of solar hydrogen production through photocatalytic water splitting. In this research, a Zn2+ and Ni2+ modified carbon hydrogen evolution cocatalyst (ZnNi-C) were synthesized and immobilized onto the surface of CdS (CdS@ZnNi-C) for photocatalytic hydrogen evolution (PHE). The preparation used an ethylenediaminetetraacetic acid disodium (EDTA)-assisted method. The hydrogen evolution rate and apparent quantum efficiency (AQE) at 420 nm for an optimized CdS@ZnNi-C photocatalyst are15.7 mmol/h/g and 31.4 %, respectively. The rate is 2.4 times and 3.7 times greater than those of Zn2+ and Ni2+ modified carbon cocatalysts (Zn-C) and (Ni-C) on CdS (CdS@Zn-C) and (CdS@Ni-C), respectively. Density functional theory calculations indicate that the elevated catalytic performance of CdS@ZnNi-C is due to the co-anchored Zn2+ and Ni2+ in carbon layers that lead to a favorable Gibbs free energy (ΔGH*) for hydrogen evolution. This approach is valuable for the design of stable and efficient photocatalysts for renewable hydrogen production.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have