Abstract
A novel and easily separable adsorbent in the shape of a membrane for the rapid removal of fluoride from water was prepared after testing Zr, La and LaZr to modify a chitosan/polyvinyl alcohol composite adsorbent (CS/PVA-Zr, CS/PVA-La, CS/PVA-LA-Zr). The CS/PVA-La-Zr composite adsorbent can remove a large amount of fluoride within 1 min of contact time, and the adsorption equilibrium can be reached within 15 min. The fluoride adsorption behavior of the CS/PVA-La-Zr composite can be described by pseudo-second-order kinetics and Langmuir isotherms models. The morphology and structure of the adsorbents were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The adsorption mechanism was studied using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), and which showed that ion exchange occurred mainly with hydroxide and fluoride ions. This study showed that an easily operable, low-cost and environmentally friendly CS/PVA-La-Zr has the potential to remove fluoride effectively from drinking water in a short time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.