Abstract

In the present study, glutaraldehyde was used as a hydrophobic modifier to crosslink polyvinyl alcohol (PVA), and copper ion was immobilized by sodium alginate (SA). Polyvinyl alcohol-copper alginate (PVA-CA) gel beads were prepared by a one-step process, and were used to adsorb and remove tetracycline (TC) from an aqueous solution. The beads were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) measurement, X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The adsorption experiment showed that the optimal pH value of the beads was 5, and that their adsorption met pseudo-second-order kinetic and Langmuir isothermal models. The adsorption thermodynamics experiment showed that the adsorption process was spontaneous and endothermic. Under optimal adsorption conditions, the maximum adsorption capacity for TC of the beads was 231.431 mg/g, which was much higher than that of a single copper alginate matrix. After 5 adsorption-desorption cycles, the adsorption capacity remained high. FTIR and X-ray photoelectron spectroscopy (XPS) revealed that the cation bonding bridge reaction was the main driving force behind the adsorption mechanism. Compared with other reported adsorption materials, the PVA-CA gel beads have high adsorption capacity, a simple preparation process, and excellent recovery performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.