Abstract

Diclofenac (DCF) is among the most effective non-steroidal anti-inflammatory drugs (NSAIDs) and at the same time one of the most consumed drugs worldwide. Since the ever-increasing use of diclofenac poses serious threats to ecosystems, its substantial removal is crucial. To address this issue, a variety of sorbents have been employed. Herein we present the diclofenac removal properties of two metal organic frameworks, namely [Zr6O4(OH)4(NH2BDC)6]·xH2O (MOR-1) and H16[Zr6O16(H2PATP)4]·xH2O (MOR-2). Batch studies revealed fast sorption kinetics for removal of DCF− from water as well as particularly high selectivity for the drug vs. common competitive species. Moreover, the composite MOR-1-alginic acid material was utilized in a sorption column, displaying remarkable removal efficiency towards DCF− anions. Significantly, this is the first time that column sorption data for removal of NSAIDs using MOF-based materials is reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.