Abstract

The ECL emission of simple and stable zirconium dioxide nanomaterials has always been a blank slate in the ECL sensors field. In this work, zirconium dioxide (ZrO2)-titanium dioxide (TiO2)-gold nanoparticle (AuNPs) composite (ZT-Au), a novel self-enhanced ECL emitter, was introduced the system of dual-quenching ECL immunosensor. The anodic luminescence of ZrO2 in the system of tripropylamine (TPrA) as a co-reagent was first reported and explored. Meanwhile, TiO2 was designed into the ECL scheme as a co-reaction accelerator to form the ZrO2/TPrA/TiO2 ternary system, which can efficiently amplify the ECL signal of the emitter. In addition, cuprous oxide-triaminophenol (Cu2O-APF) as the quencher was devoted to the dual-quenching sensing strategy. The dual-quenching mechanism that effectively boosted the immunosensor sensitivity was adequately investigated and conjectured in this paper. The sensing model based on the luminophor ZT-Au and the quencher Cu2O-APF was utilized for the detection of D-dimer, a reliable marker for the diagnosis and evaluation of thrombotic diseases. The short peptide ligands NARKFYKGC (NFC) with efficient biological affinity were used to site-directionally capture antibodies for adequately protecting the activity of antigen binding sites during the construction of the immunosensor. The implemented immunosensor was equipped with a broad linear range of 0.01–500 ng/mL and a low detection limit of 3.6 pg/mL. The original methodology opens up the field of vision for the detection of additional biomarkers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call