Abstract

This paper reports the results of a geochemical investigation of zircon from a migmatized aluminous gneiss (gn), melanosome (M), and sequential leucosome generations (Lc2, Lc3, Lc4, and Lc5) from an outcrop in the northwestern Ladoga region. The contents of REE, Y, Ti, Hf, Th, U, and P were determined using a Cameca IMS-4f ion microprobe in 12 zircon grains from the aforementioned rocks, in two-three spots in each grain. All of the specimens show rather uniform REE distribution patterns. More significant variations were observed in the light and medium REE (at smaller variations in the heavy REE), as well as in Ti, Y, Th, and U contents between zircons from the host rocks and from the leucosomes. It was supposed that REE-rich zircons from the gneiss and melanosome (without oscillatory zoning) are relics, whereas rhythmically zoned zircons with lower REE contents crystallized in the gneiss in the presence of dispersed anatectic melt. The contents of most REE and Y increase from core to rim in zircons from the gneiss, melanosome, Lc2, Lc4, and Lc5, which is opposite to the compositional trend of zircons from Lc3. It was shown that the decrease of HREE and Y content in zircon in the sequence Lc5 → gn → Lc2, Lc3, Lc4 is related to a decrease in the abundance of these elements in the rocks. The leucosomes do not correspond to a differentiation series of a single melt (there is no variation trends of Rb/Sr, K/Rb, and Rb/Ba in the rock series). The lower Lu/Hf and Sm/Nd values in the leucosomes relative to the host rocks allowed us to suppose that their protolith was gneisses (for Lc2) and migmatites (for Lc4 and Lc3). The similarity of the early migmatites and gneisses to Lc3 with respect to major and some trace elements and almost identical Lu/Hf and Sm/Nd values support the possibility of the formation of this leucosome generation during the beginning of the diatexis of migmatites, which was promoted by a temperature increase. This resulted in a specific trend in the content of some elements during zircon growth in Lc3, which is different from the trend of zircons from other leucosomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call