Abstract

The Shitouping pluton in Jiangxi Province, southern China, hosts an ion-adsorption heavy rare earth element (HREE) deposit identified by a recent geological survey. This study reveals the HREE pre-enrichment mechanism during the magmatic–hydrothermal process of granitic bedrock based on the comprehensive study of zircon structure and composition. Zircon from the Shitouping pluton, composed of syenogranite and monzogranite, can be categorized into three types based on structure and compositions. The Type-1 zircons, the predominate type in monzogranite, are early magmatic zircons with prismatic crystals and bright oscillatory zoning in CL images. In contrast, the late magmatic-hydrothermal zircons (Type-2 and Type-3) mainly occur in the syenogranite. The Type-2 zircons occur as dark CL images and euhedral crystals crystallized during the late magmatic stage. The Type-3 zircons with irregular zoning and abundant mineral inclusions in BSE images are possibly formed via intense hydrothermal alteration during the hydrothermal stage. The increase in Y/Ho ratios from Type-1 to Type-3 zircon indicates that the Shitouping syenogranites underwent magmatic to hydrothermal evolution. Compared with Type-1 and Type-2 zircons, Type-3 zircons exhibit the highest concentrations of F and HREEs. The significant increase in HREE concentrations both in zircons and bulk-rock composition of syenogranite can be attributed to the introduction of HREE-rich fluids during magma evolution. Therefore, we propose that the increase in HREE contents in zircon reflect the exsolution of HREE-rich fluids during a late stage in the magma evolution, which is an important factor controlling HREE enrichment in Shitouping syenogranites and furthermore in the generation of ion-adsorption HREE deposits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call