Abstract

The Round Top rhyolite located in Trans-Pecos Texas is enriched in Be, F, Li, Nb, Rb, Sn, Th, U, Y, Zr, and rare earth elements (REEs). REE-bearing minerals are mainly ubiquitous nano-scale accessory phases throughout the groundmass, incorporated in synchysite-group minerals, xenotime-(Y), Y- and Ce-rich fluorite, and zircon. The rhyolite is peraluminous, high-silica, alkaline (not peralkaline), with elevated heavy rare earth element concentrations and anonymously negative Eu values. Pervasive spongy groundmass and recrystallization textures are consistent with the elevated and remobilized Zr, Th, and Y + HREE (heavy rare earth element) concentrations and a high field strength element (HFSE) soluble, sub-alkalic, F-rich, magmatic system. REE-bearing minerals are present as late-magmatic, interstitial phases and attributed with closed-system, post-magmatic, hydrothermal alteration. Petrogenetic modeling provides scenarios that explain the geochemical evolution and REE complexing behavior in evolved rhyolite magmas, and determines possible source compositions and evolution. Trace element models suggest a system typical of having extensive magmatic differentiation. The resulting rhyolite magma is indicative of a silica-rich magmatic system enriched in H2O, Li, and/or F that could be considered transitional between pure silicate melt and hydrothermal fluid, where fluorine-ligand complexing was prevalent through late magmatic cooling and crystallization processes. Thorough differentiation and high fluorine activity contributed to the late stage crystallization of REE-bearing minerals in the Round Top rhyolite.

Highlights

  • The Trans-Pecos region of Texas hosts more than 100 Paleocene to Miocene age intrusive igneous and extrusive bodies related to subduction and later rifting along the southwest margin of NorthAmerica

  • The Round Top rhyolite is enriched in Be, F, Li, Nb, Rb, Sn, Th, U, Y, Zr, and rare earth elements (REEs) [1,2,3,4]

  • Geochemical modeling provides a better understanding of the geochemical evolution and REE

Read more

Summary

Introduction

The Trans-Pecos region of Texas hosts more than 100 Paleocene to Miocene age intrusive igneous and extrusive bodies related to subduction and later rifting along the southwest margin of NorthAmerica. The Round Top rhyolite is enriched in Be, F, Li, Nb, Rb, Sn, Th, U, Y, Zr, and REEs [1,2,3,4]. REE-bearing minerals are mainly ubiquitous nano-scale accessory phases throughout the groundmass, including Y- and Ce-rich fluorite, columbite-(Fe), synchysite-group minerals, xenotime-(Y), and zircon. The rhyolite is slightly peraluminous, silica-rich, sub-alkalic, with elevated HREE concentrations and a negative Eu-anomaly. The rhyolite has elevated concentrations of Zr, with zircon visible in thin section and SEM (scanning electron microscope) images as primary magmatic and secondary Th-rich metamict vapor/hydrothermal phases. This is Minerals 2018, 8, 423; doi:10.3390/min8100423 www.mdpi.com/journal/minerals

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call