Abstract

Rare earth elements (REEs) are considered to be emerging contaminants due to their widespread use and lack of recycling. Phytolacca americana L. has great potential for REEs phytoextraction. Our understanding of REEs in P. americana focuses mostly on root absorption and xylem translocation, but the role of phloem translocation has received little attention. In this research, the translocation and fractionation of REEs from phloem to organs in P. americana were investigated. In addition, the effect of organic acids in the REEs translocation via phloem exudates was also examined. The results showed that REEs could transport bidirectionally via the phloem, and 86% of REEs exported from old leaves could move downwards to the root, whereas only 14% of them transported upwards to the young leaves. Heavy rare earth elements (HREEs) enrichment was found in the REEs fractionation processes both from phloem to leaf and from stem to root, indicating that HREEs were preferentially transferred not only down to roots, but also up to the young leaves. The concentration of oxalic acid in phloem exudates was much higher than other organic acids. 94.7% oxalic acid in phloem exudates was preferred to combine with REEs, especially HREEs. Additionally, the concentrations of HREEs had a high positive correlation with oxalic acid in phloem exudates, which demonstrated oxalic acid may play a significant role in the long-distance transport of HREEs in phloem. In conclusion, HREEs have higher translocation ability than light rare earth elements (LREEs) in both xylem and phloem of P. americana. As far as we know, this is the first report focused on the phloem translocation and redistribution of REEs in P. americana, which provides a valuable understanding of the mechanism for phytoremediation of REEs contaminated soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.