Abstract
AbstractZinc metal batteries show tremendous applications in wide‐scale storages still impeded by aqueous electrolytes corrosion and interfacial water splitting reaction. Herein, a zincophobic electrolyte containing succinonitrile (SN) additive is proposed, the SN electrolyte shows a lower affinity for zinc but a stronger affinity for solid‐state interphase (SEI). In the SN electrolyte, zinc hydroxide sulfate (ZHS) is more inclined to accumulate horizontally, forming a dense SEI protective layer on the surface of the Zn anode, effectively slowing down the corrosion of Zn and dendrite growth. The zincophobic SN electrolyte enables excellent performance: zinc plating/stripping Coulombic efficiency of 99.71% for an average of 400 cycles; stable cycles in a symmetric cell for 4000 h (0.9% zinc utilization) and 325 h (86.1% zinc utilization). The soft pack battery using limited zinc delivers maximum energy density of 57.0 Wh kg−1 (based on mass loading of cathode materials and anode materials). Such a simple additive strategy provides a theoretical reference for zinc chemistry in a mild electrolyte environment in practical applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have