Abstract

People are inevitably exposed to phthalates (PEs) ubiquitously existing in environment. Our previous studies, simulating the actual situations of people exposure to PEs, have shown that the sub-chronic exposure to low-doses PEs mixture (MIXPs) impaired reproductive function in male rats. Zinc is an important element in maintaining male reproductive functions. However, it is still unknown whether zinc supplement could mitigate PEs-induced male reproductive toxicity or not with sub-chronic low-dose mixture exposure. This study aimed to explore the effect of zinc supplement on the reproductive toxicity caused by sub-chronic MIXPs exposure (160 mg/(kg•body weight)/d, for 90 days) in male rats, and further to reveal the underlying mechanisms. Testosterone (T), FSH and LH in serum, early toxicity indicators in urine, PIWI proteins (PIWIL1 and PIWIL2) expression in testes and pathological examination were performed for toxicity evaluation. Steroidogenic proteins (17β-HSD, StAR, CYP17A1, P450scc and SRD5A) were measured for mechanisms of exploration. The results indicated that zinc supplement could inhibit the T, LH, FSH level decreases in serum, abolish the effect of 5 early toxicity indicators’ levels in urine, restrain the alteration of PIWI proteins expression and improve the constructional injury of testes. These effects might be relevant with the suppressed alteration of the expression of steroidogenic proteins induced by MIXPs in rat testicular cells. This work may offer further insights into reducing health risks of MIXPs exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.