Abstract

To design a high-performance sodium-ion battery anode, binary zinc phosphides (ZnP2 and Zn3P2) were synthesized by a facile solid-state heat treatment process, and their Na storage characteristics were evaluated. The Na reactivity of ZnP2 was better than that of Zn3P2. Therefore, a C-modified ZnP2-based composite (ZnP2-C) was fabricated to achieve better electrochemical performance. To investigate the electrochemical reaction mechanism of ZnP2-C during sodiation/desodiation, various ex situ analytical techniques were employed. During sodiation, ZnP2 in the composite was transformed into NaZn13 and Na3P phases, exhibiting a one-step conversion reaction. Conversely, Zn and P in NaZn13 and Na3P, respectively, were fully recombined to the original ZnP2 phase during desodiation. Owing to the one-step conversion/recombination of ZnP2 in the composite during cycling, the ZnP2-C showed high electrochemical performance with a highly reversible capacity of 883 mA h g-1 after 130 cycles with no capacity deterioration and a fast C-rate capability of 500 mA h g-1 at 1 C and 350 mA h g-1 at 3 C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.