Abstract
Zinc oxide (ZnO) nanocrystallites with different weight ratios are incorporated into carbon nanotubes (ZnO/CNTs) or graphene oxide (ZnO/GO) nanohybrids using ultrasonication/hydrothermal approach. The produced nanohybrids were tested in heterogeneous photocatalytic degradation of methylene blue dye (MB) under visible light illumination and in-situ ultrasonication. The zinc oxide incorporated carbon nanotubes nanohybrid having about 70 wt% of ZnO (ZnO(70)/CNT) showed marked visible light photocatalytic activity enhancement for MB degradation (99%, 0.5 g/L catalyst, 0.015 min−1) compared to the rest of the nanohybrids. The performance of MB degradation using ZnO(70)/CNT nanohybrid was even enhanced during employing the dual sonophotocatalysis approach achieving a rate constant of 0.019 min−1. This arises from the structural advantages at the ZnO(70)/CNT interface by which an improvement in electronic conductivity, facile electron transfer, charge carriers separation and increased oxygen vacancies were thoroughly achieved. This was highly ascertained via the catalysts characterization performed via many physiochemical techniques including XRD, TEM-SAED, FTIR, UV–Vis diffuse reflectance, and electrical conductivity, IPCE, PL and EIS. The scavenger studies of the photocatalytic and sonophotocatalytic processes of the MB degradation using ZnO(70)/CNT illustrate the importance of OH (followed by an electron) and holes (followed by OH), respectively proposing the importance of direct and indirect production of OH; as a strong oxidizing moiety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.