Abstract

The re-vegetation of soils contaminated by potentially harmful metals is generally considered a suitable option to reduce the metal dispersion in surrounding environments. A continuous flow experiment was conducted to quantitatively assess the effect of Italian ryegrass (Lolium multiflorum Lam.) root activity on the weathering of smithsonite (ZnCO3), a common Zn mineral. At the end of the experiment (10 days), the total amount of Zn released by smithsonite was increased by a factor of 2.25 in the presence of plants. This increase was due not only to plant uptake but also to the enhancement of the Zn release into leachates. The rate of Zn release from smithsonite to leachates was 2.9 × 10−4 μg g−1 s−1 and 1.5 × 10−4 μg g−1 s−1 in the presence and the absence of plants, respectively. The strong correlation (r = 0.95; p < 0.001) between concentrations of Zn and dissolved organic C (DOC) produced by the rhizosphere activity in leachates indicated that organic root exudates and secretions were closely involved in smithsonite weathering. Although the results are derived from laboratory study, and further in situ investigations over the long term are needed, they clearly highlighted that plants can enhance metal release into the environment by accelerating mineral weathering. Therefore, it is suggested that the ability of plants to alter metal phases in soils should be further taken into account when re-vegetation strategies are proposed for the rehabilitation of metal-polluted soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call