Abstract
A nutrition deficiency is one of the various causes of hearing loss. Zinc is an essential element for cell proliferation, antioxidant reactions, and the maintenance of hearing ability. Our previous studies have reported that the auditory brainstem response (ABR) threshold is increased in mice fed with zinc-deficient diets. However, the molecular mechanism of zinc involved in auditory system remains to be elucidated. In the present study, we examined the detrimental effects of zinc deficiency on cell cycle progression in murine auditory cells (HEI-OC1). The treatment of HEI-OC1 cells with 0.5 μM TPEN (N,N,N′,N′-Tetrakis (2-pyridylmethyl) ethylenediamine) for 24 h inhibited cell proliferation, accumulation of reactive oxygen species (ROS), and induction of apoptosis. The cell proliferation block was caused by a G1/S phase arrest. Supplementation of the cell growth medium with 5 μM ZnCl2 after exposure to TPEN attenuated ROS accumulation and the arrest caused by the zinc deficiency. The ABR threshold was elevated in mice fed with a zinc-deficient diet. Additionally, we observed an increased expression of p21 and decreased expression of cyclin E and pRb in the spiral ganglion (SG), the organ of Corti (OC), Limbus (L), and stria vascularis (SV) in the zinc-deficient mouse cochlea. These results indicated that zinc is an essential nutrient for proliferation via the cell cycle and that a dysregulation of the cell cycle may cause hearing loss.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have