Abstract
A series of ternary phosphate glass systems required for infrared (IR) photonic device fabrication is synthesized by the melt-quenching technique. The effect of replacing (divalent) ZnO with (monovalent) Na 2 O on optical properties of the glass systems is investigated. The dependence of the refractive index on composition is measured over a wavelength range of 1 to 2.5 μm; the second-order nonlinear refractive index is inferred. The different factors that play a role on controlling the glass refractive index, such as electronic polarizability, bridging and non-bridging oxygen, optical basicity, and ionic interaction parameter of oxides are discussed. IR vibrational spectroscopy is used as a structural probe of the nearest neighbor environment in the glass network. The present glasses are proper to be applied in C -band telecommunication systems around 1550 nm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have