Abstract

Nanoscale metals frequently exhibit novel mechanical properties or physiochemical performances, due to the growing influence of surfaces. Here, we uncover a unique surface-mediated deformation behavior of Au nanowires by conducting in situ transmission electron microscope tensile testing. A zig-zag migration of surface steps via the transverse slips on alternate (111) and (001) planes is revealed in [112]-oriented Au nanowire, which contributes to unexpected uniform deformation with an elongation of 108.9%. Further, we discover that the unusual (001) slip can induce an anomalous stacking structure on the nanowire surface under uniaxial tension. These findings enrich our understanding of surface-mediated plasticity in metallic nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.