Abstract

A zeolitic imidazolate framework, ZIF-8, was prepared via a variety of synthesis routes: solvothermal, microwave-assisted, sonochemical, mechanochemical, dry-gel, and microfluidic methods. Their textural properties and morphology were examined by surface area measurements and scanning electron microscopy, and compared with those of commercial ZIF-8. Although the BET surface areas fell within a range of 1250–1600m2g−1, the particle size of the samples prepared by dry-gel and sonochemical routes were significantly smaller than the others, which led to superior performance in the Knoevenagel condensation reaction. The effective incorporation of magnetic Fe3O4 nanoparticles into the ZIF-8 structure for easy particle separation in the liquid phase was feasible using solvothermal, dry-gel and mechanochemical synthesis methods. Dry-gel and mechanochemical synthesis produced a higher ZIF-8 yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.