Abstract

The high efficient surface-enhanced Raman scatterring (SERS) methods to detect thiacloprid and imidacloprid were established using ZIF-8-wrapped Ag nanoparticles (AgNPs) modified with β-cyclodextrin (β-CD). The substrate of ZIF-8/β-CD@AgNPs was characterized by ultraviolet visible spectra (UV–vis), thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). The interaction between the substrate and thiacloprid/imidacloprid was also explored. The optimum measurement conditions were obtained by response surface model based on single-factor experiments. Enhancement factors (EFs) of thiacloprid and imidacloprid were respectively 2.29 × 106 and 2.60 × 106. A good linearity between the scattering intensity and the concentration of thiacloprid/imidacloprid within 3–1000 nmol L−1/6–400 nmol L−1 was established. The interference experiments indicated that the methods had good selectivity. The SERS methods were successfully applied to detect thiacloprid and imidacloprid in several vegetables samples. The recoveries ranged from 95.5 % to 105 % (n = 5). The detection limits (LODs) (S/N = 3) for thiacloprid and imidacloprid were 1.50 and 0.83 nmol L−1, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call