Abstract
Metal-organic frameworks (MOFs) are promising catalysts for producing clean energy and environmental-based applications. This paper reported one-pot encapsulation of guest molecules, e.g., thiourea (TU) and D-Glucose-6-phosphate disodium salt dihydrate (G6P-Na2), into zeolitic imidazolate frameworks (ZIF-67), denoted as S@ZIF-67 and P@ZIF-67, respectively. The organic guest molecules offered the synthesis of cobalt-based materials (e.g., Co3O4, CoP, and CoS), embedded heteroatoms (P, N, and S) via carbonization. The materials were tested for hydrogen generation via sodium borohydride (NaBH4) hydrolysis. ZIF-67, S@ZIF-67, and P@ZIF-67 displayed maximum hydrogen generation rates (HGRmax) of 27,273, 24,000, and 60,000 mLH2 gcat−1 min−1, respectively, using 20 mg of the catalyst and 0.2 wt.% of NaBH4 at 60 °C. The materials were also investigated as potential catalysts for the adsorption and catalytic degradation of water pollutants such as organic dyes, e.g., methyl orange (MO) and Congo red (CR), with degradation efficiency of 100% and 99% in a short time (30–60 min).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.