Abstract
AbstractLet X be a nonsingular algebraic variety in characteristic zero. To an effective divisor on X Kontsevich has associated a certain motivic integral, living in a completion of the Grothendieck ring of algebraic varieties. He used this invariant to show that birational (smooth, projective) Calabi-Yau varieties have the same Hodge numbers. Then Denef and Loeser introduced the invariant motivic (Igusa) zeta function, associated to a regular function on X, which specializes to both the classical p-adic Igusa zeta function and the topological zeta function, and also to Kontsevich's invariant.This paper treats a generalization to singular varieties. Batyrev already considered such a ‘Kontsevich invariant’ for log terminal varieties (on the level of Hodge polynomials of varieties instead of in the Grothendieck ring), and previously we introduced a motivic zeta function on normal surface germs. Here on any ℚ-Gorenstein variety X we associate a motivic zeta function and a ‘Kontsevich invariant’ to effective ℚ-Cartier divisors on X whose support contains the singular locus of X.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.