Abstract

AbstractTo any f ∈ ℂ[x1, … ,xn] \ ℂ with f(0) = 0 one can associate the motivic zeta function. Another interesting singularity invariant of f-1{0} is the zeta function on the level of Hodge polynomials, which is actually just a specialization of the motivic one. In this paper we generalize for the Hodge zeta function the result of Veys which provided for n = 2 a complete geometric determination of the poles. More precisely we give in arbitrary dimension a complete geometric determination of the poles of order n − 1 and n. We also show how to obtain the same results for the motivic zeta function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.